请选择 进入手机版 | 继续访问电脑版

#楼主# 2020-7-12

跳转到指定楼层
客户细分和客户建模是两个不同的概念,客户细分目标很明确,基于各种诉求将客户区分成不同的子群体,进行业务分析,或制定对应的业务策略。客户细分可能是临时性的一次性分析,也可能是需要长期固化的标准。客户建模是对客户基于某些固定的、经典的主题,进行确定性的标准设计,多数情况下会固化到系统。客户建模通常会形成对客户的分群、分组,所以实际上很多时候客户建模也完成了一次客户细分。少数情况下客户建模不会产生客户细分效果,例如客户的积分模型,成长值模型,信誉值模型。

c092501d02be4d16938419a32db24e3a_th.jpeg

单纯的客户细分方法形式多样,用途非常广泛,例如基于流量来源的留存分析,基于关键行为分群的的下单特性分析,属于数据分析的范畴。本文只关注客户建模而不关注客户细分,因为本文介绍的常见客户模型,已经代表了经典的客户细分思路。对于其他主题或领域的客户细分方法,本文不做介绍。

客户建模没有明确的定义,因为其形式、方法多样,没有数学建模严谨、严格。核心的要点是通过抽象和定量分析,产生具有某种业务诉求的需要固化的规则输出。接下来,我们介绍十套经典的客户模型,代表了常用的十种客户分析思路。需要注意的是,客户建模工作开展之前,一定要明确其价值和意义,要么作为企业经营决策分析的重要参考,要么对业务产生影响。在不同的发展阶段,对模型丰富程度的诉求不同,要在合适的阶段结合业务,建设合适的模型。

(1)基础模型

基础模型主要基于基础属性维度建设,用来呈现客户的基本情况。C端用户基础模型相对简单,丰富的字段属性即可满足要求。B端的客户相对复杂,要通过复杂的逻辑模型,呈现出B端企业的组织架构,人员架构等。基础模型是对现实世界人或物的抽象描述,通常用ER模型来实现逻辑层的客户抽象定义。通过基础模型,可以做基于客户内外在属性的细分,例如客户类型,地区,性别,年龄,收入情况等。下图是一个简化的C端客户和B端客户的基础模型ER示意图。

(2)RFM模型

RFM是最经典的客户消费行为特征分析模型,RFM代表Recency(最近一次消费时间),Frequency(某一个时间范围内的消费频次),Monetary(某一个时间范围内的平均客单价或累计交易额)。根据公司实际数据情况,将这三个指标划分成几档,可以形成多种组合(假设每个指标分五档,则可产生5x5x5个组合),对这些组合进行聚类分析,提炼出行为模式类似的多个群体,实现对客户消费特征的群体细分。

RFM的应用方向包括业务分析,客户消费特征分析,以及营销策略输出。RFM可以协助实现客户生命周期分析,例如,如果大多数成熟客户每个月稳定下单频次F是15次,即稳定一天下两单,如果R值变成了4,即最后一次下单距今已超过4天,则认为客户进入睡眠期(衰退期),需要唤醒策略激活。如果R值变成了15,则认为客户进入流失状态(离开期),需要二次激活。至于如何定义R和F,从而定义衰退和离开,需要结合实际业务以及数据分布来制定。

RFM在所有商业领域通用,是每个售卖产品或服务的企业,必须实现的第一个客户细分模型。针对RFM的介绍资料非常多,建议读者进行深度学习。

(3)价值模型

企业的资源是有限的,对有限的资源进行合理的分配,让高价值客户得到优先的服务和特权,是每个企业都会做出的选择。例如,假设有两个客户A和B,A平均一个月下20单,客单价20元;B客户平均一个月下5单,客单价200元。一个月内A客户贡献了400元营收,B客户贡献了1000元营收,显然B客户对企业的价值更大,要更加关注,保证留存。

价值模型通常从消费额的角度来建设,输出方向主要是对不同贡献程度的客户提供差异化服务。价值模型通常和客户等级共同建设,通过会员等级定义差异化服务。

需要注意的是,有些互联网APP在某些阶段不以营收为目的,对客户价值或用户价值的丈量,会采用其他指标或方式,例如登陆次数,交互行为等。

(4)忠诚度模型

忠诚度模型通常用交易频次来量化定义。以价值模型中提到的A、B客户为例,A客户虽然贡献度较小,但下单频次高,是一个高频忠诚客户。对于这类客户,企业可以通过礼包或部分特权的形式给予鼓励。

有些时候,企业会综合考虑客户的价值模型和忠诚度模型来设计会员等级,提供差异化增值服务。但对于企业来讲,本质上贡献度更高的客户更重要。例如,支付宝、携程等公司,在客户等级的规则描述中提到,会同时考虑消费、投资金额和交互行为。但我相信最终的计算公式,更多考核的是消费或投资金额。

(5)生命周期模型

前文已经对客户的生命周期做了很多介绍,定量界定客户生命周期的最重要目的,是对获取期和提升期的客户进行激活和留存,对衰退期和离开期的客户进行及时挽回。

同样,生命周期的定义方法要结合实际业务,如果是不以营收为目标的互联网公司,或变现的方式不是依赖于交易而是广告投放,此时对用户生命周期的定义可能会通过登录、交互行为来切入。

(6)偏好模型

偏好模型通过分析用户的交互行为和交易数据,来判断客户的需求偏好。偏好模型更多的时候通过客户画像和打标签来实现。

(7)信誉模型

信誉模型的设计必须配合实际的业务动作,例如对低信誉客户进行部分限制。如果没有配套的业务动作,创建信誉模型没有太大价值。信誉模型多数时候由风控团队负责。

(8)客户画像

客户画像也属于客户建模的范畴,传统意义上的客户画像是指企业对目标市场的目标客户的典型特征描述,如今的客户画像是指将目标客户群体划分成更细粒度的子群体,每个群体间重合度较小,每类子群体的消费需求和行为特征类似,计算机通过打标签的形式标识个体特征并实现子群体的聚类。

客户分析中的四个维度,包括基础属性、交互行为、业务数据、社交网络共同构成了客户画像。客户画像通过对客户打标签的形式,将所有的特征识别并进行抽象总结,将特征类似的客户聚类。

客户画像的应用方向非常广泛,运营人员的定向投放,计算机的推荐策略,千人百面,千人千面,都依赖于准确的客户画像。

客户画像的建设需要循序渐进,小步快跑,每一个改进和提升都是为了支持配合当前的业务诉求和运营诉求,不能一蹴而就,一步到位,否则会陷入数据和分析的汪洋大海。

业务人员或产品人员不能过度迷信客户画像,认为客户画像是万能的,总是有价值的。有些时候业务上的点,不需要尖端复杂的科技就可以很好地解决或解释。例如,某团购APP开展日百业务,PM通过各种细分,各种策略,将日百ICON在最佳位置展示给细分群体,苦苦研究探索不同细分群体的日百首次消费行为,百思不得其解,最终某运营小鸟分析得出,不论什么细分群体的客户,只要在APP本身消费超过N次,肯定也会在日百消费。

(9)积分模型、会员等级

积分是最常见的提升客户粘性的手段,相关文章和分析非常多;会员等级要综合考虑客户贡献度和忠诚度,前文已有讲解;这两个模型我们不再做过多介绍。

以上十套模型,代表了最常见的客户分析场景,实际运用中不一定每一个模型都单独建设,有可能是混合建设,例如,生命周期、RFM、忠诚度共同组成一个分析模型,而不是分开设计。要结合具体的实际情况设计方案。

客户分析是CRM建设中最有意思的部分,也是最有挑战的部分。如何结合企业的商业模式,客户特征,运用各种理论模型,从不同的角度分析,认识客户,并形成有价值的应用输出,需要产品经理或业务分析人员具备综合的商业知识、业务知识、市场营销知识、数据分析知识储备。

客户分析建模的工作,一般由业务分析师,策略PM,数据PM负责,是一个有趣的,值得深入研究的领域。





上一篇:内容是用户需求的表达
下一篇:如何让用户发生更多的交换行为?
转播转播 分享淘帖
回复

使用道具

成为第一个回复人

AI产品经理
小黑屋|AI产品经理社 |京ICP备19051683号-1
Powered by 长弓PM   © 2019-2050